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ABSTRACT 

Necessary conditions for  a strong relative minimum a r e  de- 

rived within the framework of a generalized Mayer formulation. Such 

necessary conditions apply to a variety of optimal problems which a r e  

obtained as particular cases  of the general form here considered. 

The trajectories involved may imply a n  orbital t ransfer ,  a 

lunar landing, etc. 

The existence of intermediate - thrust sub-arcs is analyzed for 

a minimum fuel consumption problem using the general conditions de- 

rived. The analysis shows that no intermediate - thrust sub-arc may 

form part of the extrema1 in such case. 

The technique applied in the demonstration appears to be appli- 

cable to investigate the existence of intermediate - thrust sub-arcs in 

other variational problems which derive from the general form considered. 
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1. EQUATIONS O F  MOTION AND GENERALIZED VARIATIONAL 
FORMULA TION 

The equations of planar motion of a mass-point vehicle 

which is subject to an  inverse-square gravitational force field 

and a thrusting force a r e  

= o s  - z cos e rpl = Y S  - 
P 

sin 8 A - = Z ' + - -  - c o s 4  = 0 s 

cp3 P 2  P 

x 
ve 
- - = o .  = CIS + 

q 5  

The forces acting on the vehicle and the coordinate 

erence a r e  shown in Fig. 1. Eqs. (1) to (5) a r e  referred to a tangen- 

tial intrinsic system of coordinates (5 - . The dimensionless vari- 

ables used a re  

systems of ref- 

t' 

- -  m 
'R ' v = -  s ve - V 

# z = -  QO 7 = -  

VR mI 
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r , P = -  h = - p * v e  -T - 
mI go r0 

The acceleration of gravity and the reference velocity a r e  

In the following analysis i t  will  be assumed that the thrust direction 4 

is unbounded while the thrust magnitude is bounded, i. e., 0 h 1 . max 

Any solution of Eqs. (1) to (5) is given in terms of five state 

variable functions, Y(T), P(7) ,  Z (T),  e(T), CI (T), and two control variables 

functions, h(7) and $ ( 7 ) .  Thus, the problem has two degrees of freedom 

associated with the two control variables. 

Since an optimum requirement may be imposed we w i l l  propose 

The object is to derive general neces- a generalized minimal problem. 

s a r y  conditions for an extrem-urr? which therefGre - with  appropriate sim- 

plifications - can be applied to treat  a variety of particular cases. 

Thus, the general variational problem proposed is that of mini- 

mizing the function 

Subject to the differential constraints given by Eqs. (1) to (5), and ar- 

bitrary boundary conditions of the form 

2 



Introducing the Fundamental Function 

and taking the first variation of the Mayer problem proposed, the fol- 

lowing Euler equations are obtained 

v' = v Z sin 0 - v z c o s e t v  - COS e + v4($ - 2) sin 0, (12) 
4 1 P 2 P 2  

x 
4 z  2 

a 

1 - 
4 z  5 "e 
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Since $ is unbounded Eq. (15) leads to the necessary condition 

(1 6 )  cos Jr = 0 .  v s i n $ - v  - 
3 4 z  

Eq. (14), however, due to the boundedness of 1 leads to the following 

conditions 

(i.e., x = x var L 

The function A X  is  called the "switching function" since it determines 

the mode of operation of the control variable 1. 

Due to the fact that the Fundamental Function k q .  (811 is 

time- independent the following general f i r s t  integral can be derived 

sin 0 

P 
cos 4 -2 cos 

K1 P t v2 sin 0 t v 

- C = const. (20) x 
- v 5 v ,  - 1 + v 4  [ (F - s) cos a t - x sin 6 

ZcI 

The previous f i rs t  integral is applicable along any sub-arc forming the 

trajectory. As shown by Eqs. (17) to (19) an  extrema1 a r c  may be formed 
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by sub-arcs of three different types. 

cular interest to determine whether sub-arcs along which the con- 

t ro l  variable 

that is, A = A 

conditions. 

practical point of view, w i l l  be discussed in the following paragraphs. 

In this regard, it is of parti- 

is used at  an intermediate level (i. e., between bounds, 

) may form part of the extrema1 arc ,  and under what va r  

This aspect, of interest from a theoretical as well as a 

2. CONDITIONS ALONG Avar SUB-ARCS 

Along xvar-sub-arcs Eqs. (14), (18) and (20) lead to the sim- 

plif ie d f i r  s t inte gr a1 

x 
5 '  

v' - - v  
5 - we 

and therefore, using Eq. (5), follows 

K 
5 

v - -  ~ , K5 = const. 5 -  
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K 

e 
K6 = const. s in  $ - 5 

v 3 c o s * t v  - - - = 
V 4 z  

The system of Eqs. (16) and (24) provides the following solution for 

the multipliers V 3  and v4 

Consequently, replacing the previous solutions in the first integral 

LEq. (21)I ,  we derive the V2 - multiplier as 

To the extent of obtaining a necessary condition in  te rms  of the state- 

variables of the problem, we can now use the previous expressions in 

order  to eliminate the multipliers. Thus, differentiating Eq. (25) and 

using Eqs. (11) and (25) to (27) we obtain 

C 
z sin Jr (28) 

cos 0 t 2 -  - 
Zp2 PZ 

K $ ' = K  
6 

A similar procedure, using Eqs. (12) and (25) to (27), provides 

6 



i 
(29)  

c cos 0 
z sin 0 cos 4 

- 1 
1 P sin 8 cos 4 t K  

Consequently, Eqs. (28) and (29)' imply the following General Necessary 

Condition which must be satisfied along 1 sub-arcs var 

r 1 

2 2 s i n e  cos 0 s in  J( cos q 
Zb .  

sin $cos 8 z sin2'$ 

d P 
- t 2  

- Fn Y* (30) is a general ccndition since it applies to any variational prnh- 

lem involving the minimization of a function of the form given in Eq. (6) 

with a rb i t ra ry  boundary conditions as specified by Eq. (7). 

vious General Necessary Condition {for 

in the simplier form 

The pre- 

sub-arcs} may be written 
v a r  

2 3 [sin' ( q  t 0 )  - z p s i n  t 5 sin ( 4  t e> = 0. (31) 
ZP2 Z 

3. CONDITIONS ALONG Amax SUB-ARCS 

Further necessary conditions which must be satisfied along 

the different extrema1 sub-arcs may be derived replacing the control - 
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variable by a new differentiated variable, s ay  5’. In this case 

there is no need to add the equation of definition 5’ - X = 0 to Eqs. 

(1) to (5). In fact, since 5 does not appear explicitly in the con- 

straints, (nor does i t  appear in the function to be minimized o r  in 

the boundary conditions), then the associated multiplier vanishes, 

throughout. Since the admissible variations of 5 (d 5 = [to 6 A d .) 
are:  6 5 5 0, along A = A min = 0; 6 5 2 0 ,  along X = xmax’ and 

0 along lvar sub-arcs, then three new necessary conditions 

are derived from the equation of variation associated with 6 6. Cor- 

responding to the previous unrestricted or both-sided variations 

(6 5 
-z 

and restricted or one-sided variations (6  c z  0, 6 5 0), the 

following, conditions a r e  obtained 

b) $ pi) 2 0 , for  h = h m a x  , 

0 , for X = X  = o ,  c) & (h,) m in 

The sets of Eqs. (17) to (19) and (32) to (34) complement themselves 

and allow to draw important conclusions on the necessary conditions 

to be satisfied along the extremal. We note that, i f  is continuous 

through corners only certain combinations of sub-arcs a r e  admissible. 
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In particular, the sequence Amax + ( h  = 0) is not permissible unless 

along the 1 = 0 sub-arc A - 0. Similarly, the combination of three x- 
sub-arcs, 1 + ( A  = 0) -+ X , could only be accomplished with a 

max max 

continuous A X  i f ,  and only if, A = 0 along the las t  two sub-arcs. 

ever, the fact that AX can not vanish throughout X 

How- x 
and 1 = 0 sub-arcs max 

can be readily proved by means of a particular case. Such case, (de- 

veloped in paragraph 5), shows that sub-arcs along which Ax = 0 cannot 

form part of the extremal arc. 

sub-arcs then no extremal solution would be possible. 

one must conclude that Eqs. ( 1 7 )  to (19) a re  satisfied in their strength- 

Thus, if AL = 0 along 1 and X = 0 max 

Consequently, 

ened forms and, furthermore, the function /\X (7)  is discontinuous at  

ccraers of <he extrema?. 

4. LEGENDRE AND WEIERSTRASS CONDITIONS 

To the extent of testing the minimal properties of an extremal 

a r c  it is necessary to apply the Legendre-Clebsch and Weierstrass con- 

ditions. The Legendre condition compares the extremal with admissible 

neighboring solutions in a close neighborhood. Applications of this device 

leads to 
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From Eqs. (16) and (35) follows 

as a necessary local condition which must be satisfied by any extre- 

ma l  arc.  Consequently, along powered sub-arcs 

Since A 
var 

Eq. (37) implies 

sub-arcs satisfy the conditions derived in paragraph 2, then 

as necessary conditions along A sub-arcs. However, Eq. (38) can- 

not be satisfied in its weak form with the equal sign. If K 6 -  - K 5 = v 5 =  

v a r  - 
- 
V’ = 0 s Eqs. (25) and (26) give ‘J3 = V4 = 0. Thus, Eqs. ( lo ) ,  ( I I ) ,  (12) 5 

and (21) lead to an  incompatible set  of equations for C # 0 (i. e. , for 

given time problems or  minimum time problems). 

f ree  time problems), Eqs. ( lo ) ,  ( l l) ,  (12) and (21) lead to a simultaneously 

vanishing se t  of multipliers. 

sub-arcs it must be 

And, for C = 0 (Le.  

Thus, along intermediate-thrust extrema1 

10 



Eq. (39) implies that a necessary condition for the existence of a X var 

sub-arc is that the Legendre condition be satisfied in its strengthened 

4.1 Weierstrass Condition 

A more stringent test  of the minimal character of an extremal 

may be applied using the Weierstrass condition. The latter implies the 

use of strong A-variations on the extremal in order to explore a larger 

neighborhood of admissible solutions. 

From the Weierstrass condition and with the help of Eqs. (1) 

to (5), we obtain as necessary condition for an  extremum 

V V 

Z 
4 5 1 w E,  A (A cos *) t - A ( A  s in $)  A X Z 0 .  (40) 

In Eq. (40) the A-increments stand for the difference between the value 

of a quantity on a neighboring arc  and its value on the extremal [i. e. ,  

9 
A = (. ..) - (...)I. 

Expanding Eq. (40) to second order terms in the increments 

using 
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where 

we can write the Weierstrass condition in the form 

Eqs. (17) to (19) and our considerations in paragraph 3 show that the 

t e rm 

along 1 

quires along the extremal 

A X )  is positive along X and X = 0 sub-arcs while it vanishes max 

sub-arcs. Thus, the Weierstrass condition in Eq.. (43) r e -  var 

V 
4 

Z v3  cos JI + - sin 4 2 0 . (44) 

As shown before in paragraph 4, Eq. (44) must be satisfied in its 

strengthened form along intermediate thrust sub-arcs for these to 

be admissible. From our considerations in paragraphs 4 and 4. 1 

follows that extremal sub-arcs along which V 

afford a strong relative minimum (Ref. 1). 

sin $ > , - cos $ t V 
3 4 z  
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5. PIECED SOLUTIONS AND EXISTENCE OF SUB-ARCS 

The type of composite extremal solution which satisfies a 

given variational problem depends on the boundary values specified 

and the form of the function which is to be minimized. In each appli- 

cation the extremal may be formed by different sub-arcs and in some 

cases certain sub-arcs may not be admissible to form part of the so- 

lution. 

interest to be investigated, such as, admissibile, existence, sequence 

and number of sub-arcs which may form the extremal. 

pects, the admissibility of certain sub-arcs to form part of the extre- 

Associated with these matters there a r e  aspects of special 

Of these as- 

mal  is one of particular interest. 

In our case, we have shewn that sub-arcs nf t h r e e  different 

However, the admissibility of types may form part of the extremal. 

each sub-arc - particularly of intermediate thrust sub-arcs - to form 

part  of the extremal, must be the object of a special anaiysis in each 

variational problem proposed. The general conditions derived in  pre - 
vious paragraphs should therefore be accordingly specialized in order 

to treat  the minimum problem proposed with the specific boundary con- 

ditions assigned. 

To the extent of presenting a specific application w e  w i l l  analyze 

in the following a minimum fuel consumption problem. In this problem 

the final range and the time of transfer a r e  assumed unspecified. Our 
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interest is to investigate whether intermediate thrust sub-arcs may 

form part of the extremal. 

5.1 Case of Non-Existence of Intermediate-Thrust Sub-Arcs 

Assume a minimum fuel consumption orbital transfer in  

which the range or central angle and the final time a r e  not specified. 

Such trajectory may involve a transfer between preassigned orbits in 

space, a lunar landing, etc. 

minimum fuel expenditure then the general function in Eq. (6) takes on 

the special form 

Since the problem considered is that of 

(45) G = -cr 
F *  

I’ 5’ The boundary conditions a r e  assumed to specify the values of Y 

zI, 
fied. Consequently, the three sub-conditions of transversality associat- 

ed with the differentials dYF, 

I 

PI, T1 and pF, zF, OF- Thus, YF,  PF and T a r e  left unspeci- 
F 

and dTF lead to 
F 

K1 dYF = 0 dYF # 0 .. K 1 =  0 ,  (46) 

= 1 ,  (47 
v5F 

t 5 F  - ’) *F = D # O  .. 

CdTF = 0 , d7F # 0 .. c = o ,  (48) 
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From Eqs. (31), (46) and (48), therefore follows that along inter- 

mediate thrust sub-arcs 

However, as shown in paragraph 4, hq. (39)l , along X 

must be K 

sub-arcs var 

’ 0 , S O  Eq. (49) requires 6 

2 2 2  
s in  (Jr t e)  = P Z  sin JI , 

Eq. (50), in  turn, implies 

sin @ 
tan Jr = . 

z JP - cos e 

Eqs. (16) and (51) lead to 

v ( Z J P  - c o s  8 ) - v 3  z sine = o . 4 

The total derivative of Eq. (52) with respect  to 7 gives 



where 

= (1 - z cosf3JP ) * p2 

i 

- - Z2 cos 2 e  - cos e z JP + sin2 e 
p3 - p2 P 

x 
CI 

- - (sin $' cos 8 t cos s sin e) , 

Thus, the necessary condition for the &ten= of a solution with a 

non-simultaneously vanishing set of multipliers i s  expressed by the 

vanishing of the determinant 

0 

Z sin 8 

p2 

(54) 

sin S 

sin 0 - -  
p2 

p3 

( 5 5 )  

p4 
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The elements of the previous determinant a r e  the coefficients of 

Eqs. (16). (21) and (53). From Eqs. (51) and (57), expanding the 

determinant and performing lengthy transformations of the result-  

ing equation w e  can derive the condition 

Introducing the variable rl = Z 4 , Eq. (58) can be rewritten as 

Expanding Eq. (59) and simplifying te rms  we can reduce i t  to the con- 

dition 

Eq. (60) is solved for T l  = 0 (i.e.,  Z = 0 or  P = 0) or 8 = n I-T = 0. That 
n 
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c 

is, Eq. (60) implies the physical impossibility of the existence of 

intermediate-thrust sub-arcs for the minimum problem proposed. 

The technique of analysis followed in the discussion of this 

case appears applicable to treat  other variational problems which 

a r e  derived specializing the general form of the function in Eq. (6) 

and the boundary conditions in Eq. (7). 
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